Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 98(5): e0169323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563763

RESUMEN

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Ratones , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Humanos , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Vacuna Antisarampión/inmunología , Vacuna Antisarampión/genética , Ratones Endogámicos BALB C
2.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37288670

RESUMEN

Flagella are important for eukaryote cell motility, including in sperm, and are vital for life cycle progression of many unicellular eukaryotic pathogens. The '9+2' axoneme in most motile flagella comprises nine outer doublet and two central-pair singlet microtubules. T-shaped radial spokes protrude from the outer doublets towards the central pair and are necessary for effective beating. We asked whether there were radial spoke adaptations associated with parasite lineage-specific properties in apicomplexans and trypanosomatids. Following an orthologue search for experimentally uncharacterised radial spoke proteins (RSPs), we identified and analysed RSP9. Trypanosoma brucei and Leishmania mexicana have an extensive RSP complement, including two divergent RSP9 orthologues, necessary for flagellar beating and swimming. Detailed structural analysis showed that neither orthologue is needed for axoneme assembly in Leishmania. In contrast, Plasmodium has a reduced set of RSPs including a single RSP9 orthologue, deletion of which in Plasmodium berghei leads to failure of axoneme formation, failed male gamete release, greatly reduced fertilisation and inefficient life cycle progression in the mosquito. This indicates contrasting selection pressures on axoneme complexity, likely linked to the different mode of assembly of trypanosomatid versus Plasmodium flagella.


Asunto(s)
Parásitos , Plasmodium , Masculino , Animales , Axonema/metabolismo , Parásitos/metabolismo , Microtúbulos/metabolismo , Semillas , Proteínas/metabolismo , Flagelos/metabolismo , Eucariontes/metabolismo , Plasmodium/metabolismo , Dineínas/metabolismo
3.
EBioMedicine ; 75: 103810, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35045362

RESUMEN

BACKGROUND: V591 (TMV-083) is a live recombinant measles vector-based vaccine candidate expressing a pre-fusion stabilized SARS-CoV-2 spike protein. METHODS: We performed a randomized, placebo-controlled Phase I trial with an unblinded dose escalation and a double-blind treatment phase at 2 sites in France and Belgium to evaluate the safety and immunogenicity of V591. Ninety healthy SARS-CoV-2 sero-negative adults (18-55 years of age) were randomized into 3 cohorts, each comprising 24 vaccinees and 6 placebo recipients. Participants received two intramuscular injections of a low dose vaccine (1 × 105 median Tissue Culture Infectious Dose [TCID50]), one or two injections of a high dose vaccine (1 × 106 TCID50), or placebo with a 28 day interval. Safety was assessed by solicited and unsolicited adverse events. Immunogenicity was measured by SARS-CoV-2 spike protein-binding antibodies, neutralizing antibodies, spike-specific T cell responses, and anti-measles antibodies. ClinicalTrials.gov, NCT04497298. FINDINGS: Between Aug 10 and Oct 13, 2020, 148 volunteers were screened of whom 90 were randomized. V591 showed a good safety profile at both dose levels. No serious adverse events were reported. At least one treatment-related adverse event was reported by 15 (20.8%) participants receiving V591 vs. 6 (33.3%) of participants receiving placebo. Eighty-one percent of participants receiving two injections of V591 developed spike-binding antibodies after the second injection. However, neutralizing antibodies were detectable on day 56 only in 17% of participants receiving the low dose and 61% receiving the high dose (2 injections). Spike-specific T cell responses were not detected. Pre-existing anti-measles immunity had a statistically significant impact on the immune response to V591, which was in contrast to previous results with the measles vector-based chikungunya vaccine. INTERPRETATION: While V591 was generally well tolerated, the immunogenicity was not sufficient to support further development. FUNDING: Themis Bioscience GmbH, a subsidiary of Merck & Co. Inc., Kenilworth, NJ, USA; Coalition for Epidemic Preparedness Innovations (CEPI).


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , Vectores Genéticos , Inmunogenicidad Vacunal , Virus del Sarampión , SARS-CoV-2/inmunología , Adolescente , Adulto , COVID-19/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética
4.
J Biol Chem ; 298(1): 101290, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678315

RESUMEN

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Límite de Detección , Proteínas de la Nucleocápside/inmunología
5.
Nat Commun ; 12(1): 3025, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021152

RESUMEN

Assessment of the cumulative incidence of SARS-CoV-2 infections is critical for monitoring the course and extent of the COVID-19 epidemic. Here, we report estimated seroprevalence in the French population and the proportion of infected individuals who developed neutralising antibodies at three points throughout the first epidemic wave. Testing 11,000 residual specimens for anti-SARS-CoV-2 IgG and neutralising antibodies, we find nationwide seroprevalence of 0.41% (95% CI: 0.05-0.88) mid-March, 4.14% (95% CI: 3.31-4.99) mid-April and 4.93% (95% CI: 4.02-5.89) mid-May 2020. Approximately 70% of seropositive individuals have detectable neutralising antibodies. Infection fatality rate is 0.84% (95% CI: 0.70-1.03) and increases exponentially with age. These results confirm that the nationwide lockdown substantially curbed transmission and that the vast majority of the French population remained susceptible to SARS-CoV-2 in May 2020. Our study shows the progression of the first epidemic wave and provides a framework to inform the ongoing public health response as viral transmission continues globally.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , COVID-19/virología , Niño , Preescolar , Epidemias , Femenino , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Prevalencia , SARS-CoV-2/fisiología , Estudios Seroepidemiológicos , Adulto Joven
6.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259646

RESUMEN

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Pandemias , Paris/epidemiología , Estudios Seroepidemiológicos , Factores de Tiempo
7.
Sci Transl Med ; 12(559)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32817357

RESUMEN

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Prueba de COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Citometría de Flujo/métodos , Francia/epidemiología , Voluntarios Sanos , Humanos , Inmunoprecipitación/métodos , Luciferasas , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Investigación Biomédica Traslacional , Adulto Joven
8.
Elife ; 62017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28506360

RESUMEN

Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Esporozoítos/crecimiento & desarrollo , Animales , Línea Celular , Endocitosis , Hepatocitos/parasitología , Interacciones Huésped-Patógeno , Humanos , Roedores , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...